653 research outputs found

    One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator

    Get PDF
    One-way quantum computing is experimentally appealing because it requires only local measurements on an entangled resource called a cluster state. Record-size, but non-universal, continuous-variable cluster states were recently demonstrated separately in the time and frequency domains. We propose to combine these approaches into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up to (3×1033\times 10^3 frequencies) ×\times (unlimited number of temporal modes) into a new and computationally universal continuous-variable cluster state. We introduce a generalized measurement protocol to enable improved computational performance on this new entanglement resource.Comment: (v4) Consistent with published version; (v3) Fixed typo in arXiv abstract, 14 pages, 8 figures; (v2) Supplemental material incorporated into main text, additional explanations added, results unchanged, 14 pages, 8 figures; (v1) 5 pages (3 figures) + 6 pages (5 figures) of supplemental material; submitted for publicatio

    Gravity wave momentum flux in the lower stratosphere over convection

    Get PDF
    This work describes a method for estimating vertical fluxes of horizontal momentum carried by short horizontal scale gravity waves (lambda(sub x) = 10-100 km) using aircraft measured winds in the lower stratosphere. We utilize in situ wind vector and pressure altitude measurements provided by the Meteorological Measurement System (MMS) on board the ER-2 aircraft to compute the momentum flux vectors at the flight level above deep convection during the tropical experiment of the Stratosphere Troposphere Exchange Project (STEP-Tropical). Data from Flight 9 are presented here for illustration. The vertical flux of horizontal momentum these observations points in opposite directions on either side of the location of a strong convective updraft in the cloud shield. This property of internal gravity waves propagating from a central source compares favorably with previously described model results

    Critical region for droplet formation in the two-dimensional Ising model

    Get PDF
    We study the formation/dissolution of equilibrium droplets in finite systems at parameters corresponding to phase coexistence. Specifically, we consider the 2D Ising model in volumes of size L2L^2, inverse temperature \beta>\betac and overall magnetization conditioned to take the value \mstar L^2-2\mstar v_L, where \betac^{-1} is the critical temperature, \mstar=\mstar(\beta) is the spontaneous magnetization and vLv_L is a sequence of positive numbers. We find that the critical scaling for droplet formation/dissolution is when vL3/2L2v_L^{3/2} L^{-2} tends to a definite limit. Specifically, we identify a dimensionless parameter Δ\Delta, proportional to this limit, a non-trivial critical value \Deltac and a function λΔ\lambda_\Delta such that the following holds: For \Delta<\Deltac, there are no droplets beyond logL\log L scale, while for \Delta>\Deltac, there is a single, Wulff-shaped droplet containing a fraction \lambda_\Delta\ge\lamc=2/3 of the magnetization deficit and there are no other droplets beyond the scale of logL\log L. Moreover, λΔ\lambda_\Delta and Δ\Delta are related via a universal equation that apparently is independent of the details of the system.Comment: 48 pages, 2 figures, version to appear in Commun. Math. Phy

    Spatial Optical Solitons due to Multistep Cascading

    Full text link
    We introduce a novel class of parametric optical solitons supported simultaneously by two second-order nonlinear cascading processes, second-harmonic generation and sum-frequency mixing. We obtain, analytically and numerically, the solutions for three-wave spatial solitons and show that the presence of an additional cascading mechanism can change dramatically the properties and stability of two-wave quadratic solitary waves.Comment: 6 pages, 4 figure

    LineUp: Visual Analysis of Multi-Attribute Rankings

    Get PDF
    Rankings are a popular and universal approach to structuring otherwise unorganized collections of items by computing a rank for each item based on the value of one or more of its attributes. This allows us, for example, to prioritize tasks or to evaluate the performance of products relative to each other. While the visualization of a ranking itself is straightforward, its interpretation is not, because the rank of an item represents only a summary of a potentially complicated relationship between its attributes and those of the other items. It is also common that alternative rankings exist which need to be compared and analyzed to gain insight into how multiple heterogeneous attributes affect the rankings. Advanced visual exploration tools are needed to make this process efficient. In this paper we present a comprehensive analysis of requirements for the visualization of multi-attribute rankings. Based on these considerations, we propose LineUp - a novel and scalable visualization technique that uses bar charts. This interactive technique supports the ranking of items based on multiple heterogeneous attributes with different scales and semantics. It enables users to interactively combine attributes and flexibly refine parameters to explore the effect of changes in the attribute combination. This process can be employed to derive actionable insights as to which attributes of an item need to be modified in order for its rank to change. Additionally, through integration of slope graphs, LineUp can also be used to compare multiple alternative rankings on the same set of items, for example, over time or across different attribute combinations. We evaluate the effectiveness of the proposed multi-attribute visualization technique in a qualitative study. The study shows that users are able to successfully solve complex ranking tasks in a short period of time.Engineering and Applied Science

    Mechanisms of Brain Injury in Bacterial Meningitis: Workshop Summary

    Get PDF
    Morbidity and mortality associated with bacterial meningitis remain high, although antibiotic therapy has improved during recent decades. The major intracranial complications of bacterial meningitis are cerebrovascular arterial and venous involvement, brain edema, and hydrocephalus with a subsequent increase of intracranial pressure. Experiments in animal models and cell culture systems have focused on the pathogenesis and pathophysiology of bacterial meningitis in an attempt to identify the bacterial and/or host factors responsible for brain injury during the course of infection. An international workshop entitled "Bacterial Meningitis: Mechanisms of Brain Injury” was organized by the Department of Neurology at the University of Munich and was held in Eibsee, Germany, in June 1993. This conference provided a forum for the exchange of current information on bacterial meningitis, including data on the clinical spectrum of complications, the associated morphological alterations, the role of soluble inflammatory mediators (in particular cytokines) and of leukocyte-endothelial cell interactions in tissue injury, and the molecular mechanisms of neuronal injury, with potential mediators such as reactive oxygen species, reactive nitrogen species, and excitatory amino acids. It is hoped that a better understanding of the pathophysiological events that take place during bacterial meningitis will lead to the development of new therapeutic regimen
    corecore